INDEX

Absolute humidity, 16-3
Absolute magnitude, 25-4, 25-13, 25-14
Absorption coefficient, 18-4
Absorption cross section, 19-10, 22-2
Absorption index, 19-10
Absorption line parameters, 18-5
Acceleration due to gravity, 14-7, 14-8, 14-28–14-30
Acetylene (C$_2$H$_2$), 21-23
Active experiments in space plasmas, 10-96
Activity indices, 4-27
 Δ, 4-32
 ΔK, 4-29
 ΔK_p, 4-28, 5-26, 7-5, 8-20, 8-22, 8-23, 10-60, 17-30, 17-35
 ΔK_s, 4-29
 U, 4-32
 a^2, 4-29
 a_k, 4-29
 a_m, 4-29
 a_p, 4-29
 u, 4-32
 u_1, 4-32
 Adiabatic invariants, 5-3, 5-4, 5-11, 5-13, 5-19, 5-38, 5-45, 8-7
 AE-C, 8-13
 AE-D, 8-13, 8-23
 AE-E, 2-19
 Aerosol
 absorption, 18-20
 extinction, 18-15, 18-18, 18-21–18-23
 models, 18-10, 18-14, 18-26–18-27, 18-46
 particles, 18-9–18-10
 refractive index, 18-12, 18-16, 18-17
 scattering, 18-15, 18-19
 sources, 21-15
 Aerospace Guidance and Metrology Center, 23-40, 23-41
 AF-72-1, 5-29
 AFGWC, 1-23, 10-59
 Air coupled seismic waves, 23-20
 Air Force—National Severe Storms Project, 20-23
 Air Force Global Weather Center (AFGWC), 1-23, 10-59
 Air Force Reference Atmosphere (0-90 km), 14-7
 Air Force Satellite Interactions Model (AFSIM), 7-26
 Air Weather Service (AWS), 16-43
 Air-earth conduction current, 20-4
 Aircraft icing, 16-41
 Aircraft lightning strike, 20-25
 Airglow, 13-1, 12-20, 12-25, 12-27
 Aitken nuclei, 16-46
 Alachogen: plate fracture, 23-5
 ALADDIN I experiment, 21-44
 Albedo, 15-1, 18-35
 Alfvén layer, 8-9
 Alfvén speed-waves-velocity, 4-23, 4-24
 Alfvén waves, 1-11, 3-4, 3-13–3-16, 3-24, 3-30
 All sky camera, 10-18
 All sky imaging photometers, 10-18
 Alouette I, 9-8
 Ames, 21-16
 Amplitude fluctuation, 19-9
 Amplitude and phase scintillation, 10-84
 Anelastic damping factor, 23-11
 Angular gyrofrequency, 5-6
 Angular refraction, 10-87
 Antenna pattern, 10-54
 Antenna temperature, 11-1
 Antipode, 10-29
 Apparent brightness, 25-7
 Appleton anomaly, 9-4, 9-8, 10-20, 10-78
 Appleton dispersion formula, 10-3
 Appleton-Hartree formula, 10-29, 10-37
 Arc discharge, 7-7, 7-9
 Archimedian spiral, 3-21, 6-8, 6-23–6-25, 6-26
 Arcing, 7-5, 7-7, 7-9, 7-16
 Argon, 21-47
 Artificial modification: ionosphere, 10-96
 Artificial radiation belts, 5-50
 Aseismic uplift, 23-22
 Atmospheric deflection, 24-8
 Astronomic azimuth, 23-34
 Astronomical latitude, 24-1
 Astronomical longitude, 24-1
 Asymmetry parameter, 18-24
 Asymptotic cones of acceptance, 6-3
 Atmosphere
 composition of, 21-1
 composition models, 18-1
 electric fields, 20-3, 20-4
 minor species, 21-1, 21-14, 21-41
 molecular species, 18-6
 number density, 14-2
 properties of, 14-2
 structure of, 14-3, 14-6
 Atmospheric humidity atlas, 16-3
 Atmospheric loss cone, 8-10
 Atmospheric radiance, 18-37, 18-42, 18-47–18-49, 22-1
 Atmospheric refraction, 18-65
 Atmospheric transmittance, 18-37, 18-42, 18-45, 18-47–18-49
INDEX

Cloud cover models, 16-30
beta distribution, 16-30
celling model, 16-31
model B, 16-31
S distribution, 16-30
Cloud droplets, 18-25, 18-27-18-29
Cloud-free field-of-view (CFFOV), 16-37
Corona solar (Continued)

beta distribution, 16-30
hydrostatic equilibrium, 3-1, 3-2
isothermal, 3-2
temperature, 3-2
Coronal holes, 1-11, 1-20, 10-59
Cosmic radiation, 6-1, 6-3, 20-1-20-3, 20-18, 21-52
albedo electron flux, 6-15, 6-19
albedo neutron flux, 6-16, 6-19
albedo proton flux, 6-15
anomalous component
composition, 6-3, 6-4
cosmogenic isotopes, 6-6, 6-14
cyclic variations, 6-8
differential energy spectra, 6-4, 6-5, 6-8
electron flux, 20-15, 20-16
ionization rates in the atmosphere, 6-12, 6-14
isotopic composition, 6-6
Jovian electrons, 6-3, 6-6
modulation parameter, 6-7
primary, 6-3, 6-12
secondary, 6-12, 6-13
circular cycle modulation, 6-3, 6-4, 6-6
circular modulation theory, 6-7
transient variations, 6-8
universal abundance, 6-3
Cosmic ray event, 6-9
Cosmic ray penumbral, 6-10
Cosmic ray shower, 6-13
Coulomb collisions, 5-13-5-15, 5-22
Counter electrojet, 9-7
Cowling collisions, 5-13-5-15, 5-22
Critical frequencies, 10-1, 10-38, 10-48, 10-56
FoE, 10-1, 10-41, 10-49
FoE1, 10-1, 10-41
FoE2, 10-1, 10-41, 10-59, 10-89
Cross-modulation, 10-37
Current balance on satellite surfaces, 7-10, 7-11, 7-16
Cutoff frequencies, 10-29
Cutoff rigidity, 6-2, 6-9, 6-10, 6-12, 6-18
Cyclotron harmonic resonances, 5-19, 5-20
D region, 9-1, 10-28, 10-34, 10-36, 10-37, 12-1, 12-3, 12-4,
12-16-12-32, 12-34, 12-37, 12-38, 12-39, 12-40, 12-41
12-42-12-51, 21-46, 21-52, 21-56, 21-57
D region negative ion chemistry, 20-10
D region positive ion chemistry, 20-9
Data centers, 4-32
Dayglow emission, 21-47
Decay length, 3-7, 10-15, 7-16-7-18, 7-21, 7-22, 7-24
Decimeter-radio bursts, 11-3
Defense Meteorological Satellite Program (DMSP), 8-1, 8-17,
8-20, 12-2, 12-9, 12-12, 12-17, 16-33
Definitive geomagnetic reference field, 4-27
Degree day, 15-29
Density scale heights, 14-28, 14-30
Density, atmospheric, 14-1, 14-3, 14-27, 15-31
correlation coefficients, 15-33
diurnal variations, 15-38
high altitude, 14-27-14-32, 14-37, 14-38
latitudinal variations, 14-8, 14-13-14-16, 15-31
longitudinal variations, 14-21, 14-22
seasonal variations, 14-8, 14-13-14-16, 15-31
warm and cold winter stratosphere/mesosphere, 14-23,
14-24
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depolarization factor</td>
<td>18-8</td>
</tr>
<tr>
<td>Dew point</td>
<td>16-1</td>
</tr>
<tr>
<td>Dielectrics</td>
<td></td>
</tr>
<tr>
<td>charge on</td>
<td>7-29</td>
</tr>
<tr>
<td>deposition of charge in</td>
<td>7-15</td>
</tr>
<tr>
<td>surface potential</td>
<td>7-5</td>
</tr>
<tr>
<td>Differential carrier phase</td>
<td>10-85</td>
</tr>
<tr>
<td>Differential charging</td>
<td>7-4</td>
</tr>
<tr>
<td>Differential time delay</td>
<td>10-88</td>
</tr>
<tr>
<td>Diffusion coefficients</td>
<td>20-7</td>
</tr>
<tr>
<td>Diffusion equation</td>
<td>5-12</td>
</tr>
<tr>
<td>Dipolar magnetic field</td>
<td>5-1</td>
</tr>
<tr>
<td>Dipole field lines</td>
<td>5-2</td>
</tr>
<tr>
<td>Dipole moment of the earth</td>
<td>4-25</td>
</tr>
<tr>
<td>Dipole earth models</td>
<td></td>
</tr>
<tr>
<td>10-22-10-24, 10-26, 10-29, 10-30, 10-34</td>
<td></td>
</tr>
<tr>
<td>Dispersion formula (Edlen)</td>
<td>19-1</td>
</tr>
<tr>
<td>Displacement current</td>
<td>20-6</td>
</tr>
<tr>
<td>Disturbing potential</td>
<td>24-8</td>
</tr>
<tr>
<td>Disturbance-daily variation</td>
<td>4-8</td>
</tr>
<tr>
<td>Diurnal propagation</td>
<td>10-35, 10-36</td>
</tr>
<tr>
<td>Diversity techniques: HF propagation</td>
<td>10-57</td>
</tr>
<tr>
<td>Doppler method: satellite tracking</td>
<td>24-12,24-15</td>
</tr>
<tr>
<td>Doppler observations</td>
<td>24-4</td>
</tr>
<tr>
<td>Doppler radar frequency</td>
<td>10-69</td>
</tr>
<tr>
<td>Doppler ranging: satellite tracking</td>
<td>24-12,24-14</td>
</tr>
<tr>
<td>Doppler shift</td>
<td>25-4</td>
</tr>
<tr>
<td>Doppler widths</td>
<td>18-38, 18-39, 18-42</td>
</tr>
<tr>
<td>Drift orbit</td>
<td>5-5</td>
</tr>
<tr>
<td>Drift time</td>
<td>5-5, 5-7</td>
</tr>
<tr>
<td>Drift velocity</td>
<td>5-6, 5-7, 8-8</td>
</tr>
<tr>
<td>Dynamic method: satellite tracking</td>
<td>24-12</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>14-5</td>
</tr>
<tr>
<td>Dynamics explorer (DE)</td>
<td>12-5, 17-30, 17-43, 17-54</td>
</tr>
<tr>
<td>E-folding particle energy</td>
<td>6-1</td>
</tr>
<tr>
<td>E region</td>
<td>9-1, 10-27, 10-28, 10-34, 10-36, 12-1, 12-2, 12-4, 12-25, 21-52-21-54, 21-57</td>
</tr>
<tr>
<td>Earth</td>
<td></td>
</tr>
<tr>
<td>gravitational field</td>
<td>24-12</td>
</tr>
<tr>
<td>magnetic field polarity</td>
<td>23-5</td>
</tr>
<tr>
<td>potential field</td>
<td>24-10</td>
</tr>
<tr>
<td>Earth interior</td>
<td>23-1</td>
</tr>
<tr>
<td>crust</td>
<td>23-1</td>
</tr>
<tr>
<td>inner core</td>
<td>23-2</td>
</tr>
<tr>
<td>mantle</td>
<td>23-1</td>
</tr>
<tr>
<td>outer core</td>
<td>23-2</td>
</tr>
<tr>
<td>Earth motion</td>
<td>23-21</td>
</tr>
<tr>
<td>horizontal</td>
<td>23-21</td>
</tr>
<tr>
<td>measurements</td>
<td>23-22</td>
</tr>
<tr>
<td>vertical</td>
<td>23-21</td>
</tr>
<tr>
<td>Earth tides</td>
<td>23-21, 23-24, 23-25</td>
</tr>
<tr>
<td>Earth-ionosphere duct</td>
<td>10-34</td>
</tr>
<tr>
<td>Earthlimb</td>
<td>12-37</td>
</tr>
<tr>
<td>Earthlimb experiment</td>
<td>13-5, 13-6</td>
</tr>
<tr>
<td>Earthquakes</td>
<td>23-6, 23-7, 23-9, 23-11</td>
</tr>
<tr>
<td>fault plane solution</td>
<td>23-14</td>
</tr>
<tr>
<td>hazard evaluation</td>
<td>23-15, 23-16-23-18</td>
</tr>
<tr>
<td>intensity scale</td>
<td>23-12</td>
</tr>
<tr>
<td>magnitude</td>
<td>23-13</td>
</tr>
<tr>
<td>prediction</td>
<td>23-14</td>
</tr>
<tr>
<td>rate of occurrence</td>
<td>23-15</td>
</tr>
<tr>
<td>recurrence curves</td>
<td>23-15</td>
</tr>
<tr>
<td>seismic hazard maps</td>
<td>23-18</td>
</tr>
<tr>
<td>seismic moment</td>
<td>23-13</td>
</tr>
<tr>
<td>strong ground motion</td>
<td>23-15</td>
</tr>
<tr>
<td>Earthshine</td>
<td>13-1</td>
</tr>
<tr>
<td>Eckman spiral</td>
<td>17-1</td>
</tr>
<tr>
<td>Eclipse charging</td>
<td>7-4</td>
</tr>
<tr>
<td>Eddy circulations</td>
<td>4-16</td>
</tr>
<tr>
<td>Eddy diffusion</td>
<td>21-42</td>
</tr>
<tr>
<td>Effective bandwidth</td>
<td>25-4</td>
</tr>
<tr>
<td>Effective brightness</td>
<td>25-7, 25-8</td>
</tr>
<tr>
<td>Effective wavelength</td>
<td>25-4</td>
</tr>
<tr>
<td>Einstein A coefficient</td>
<td>12-22, 12-26, 12-34, 13-1, 13-9</td>
</tr>
<tr>
<td>Ekman spiral</td>
<td>17-1</td>
</tr>
<tr>
<td>Electric charge generation</td>
<td>20-20</td>
</tr>
<tr>
<td>Electric field</td>
<td></td>
</tr>
<tr>
<td>auroral</td>
<td>8-21</td>
</tr>
<tr>
<td>convection</td>
<td>5-10, 5-14</td>
</tr>
<tr>
<td>in earth’s equatorial plane</td>
<td>5-10</td>
</tr>
<tr>
<td>ionospheric</td>
<td>8-12</td>
</tr>
<tr>
<td>magnetospheric</td>
<td>8-8, 8-9, 8-10</td>
</tr>
<tr>
<td>parallel to magnetic field</td>
<td>8-24</td>
</tr>
<tr>
<td>polar cap</td>
<td>8-13, 8-14</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>20-2-20-4, 20-12-20-15, 20-17</td>
</tr>
<tr>
<td>Electrode effect</td>
<td>20-6</td>
</tr>
<tr>
<td>Electrodynamics, magnetospheric</td>
<td>8-1</td>
</tr>
<tr>
<td>Electrojet current</td>
<td>12-1</td>
</tr>
<tr>
<td>Electron density profile</td>
<td>10-1, 10-4, 10-19, 10-39</td>
</tr>
<tr>
<td>Electron density, ionospheric</td>
<td>10-27, 10-33, 10-35, 10-37</td>
</tr>
<tr>
<td>Electron flux</td>
<td>7-2</td>
</tr>
<tr>
<td>Electron pitch angle</td>
<td>5-37</td>
</tr>
<tr>
<td>distribution</td>
<td>5-37</td>
</tr>
<tr>
<td>Electron precipitation</td>
<td>10-34</td>
</tr>
<tr>
<td>Electron temperature</td>
<td>10-14</td>
</tr>
<tr>
<td>Electron volt</td>
<td>6-1</td>
</tr>
<tr>
<td>Electron and ion temperatures</td>
<td>10-1</td>
</tr>
<tr>
<td>Electrosphere</td>
<td>20-17</td>
</tr>
<tr>
<td>Elevated antennas</td>
<td>10-23, 10-29-10-33</td>
</tr>
<tr>
<td>Elevation angle errors</td>
<td>10-88</td>
</tr>
<tr>
<td>ELF, 10-20, 10-22, 10-25-10-28, 10-34</td>
<td></td>
</tr>
<tr>
<td>Elsasser band model</td>
<td>18-44</td>
</tr>
<tr>
<td>Energetic electrons</td>
<td>7-5</td>
</tr>
<tr>
<td>Energetic particles</td>
<td>5-1</td>
</tr>
<tr>
<td>Energy budget campaign</td>
<td>13-4</td>
</tr>
<tr>
<td>Energy cycles, earth/atmosphere system</td>
<td>15-1, 15-3</td>
</tr>
<tr>
<td>Energy diffusion equation</td>
<td>5-13</td>
</tr>
<tr>
<td>Energy level diagrams</td>
<td></td>
</tr>
<tr>
<td>atomic oxygen</td>
<td>12-25</td>
</tr>
<tr>
<td>CO₂, 12-34</td>
<td></td>
</tr>
<tr>
<td>N₂ and N²⁺</td>
<td>12-23</td>
</tr>
<tr>
<td>NO, 12-33, 12-34</td>
<td></td>
</tr>
<tr>
<td>O₂ and O²⁺</td>
<td>12-23</td>
</tr>
<tr>
<td>Energy spectrum</td>
<td>6-1</td>
</tr>
<tr>
<td>Energy of a nucleon</td>
<td>6-1</td>
</tr>
<tr>
<td>Environmental Technical Applications Center (ETAC)</td>
<td>17-1, 20-33</td>
</tr>
<tr>
<td>Ephemeris time</td>
<td>24-16, 25-2</td>
</tr>
<tr>
<td>Equatorial airglow</td>
<td>10-18</td>
</tr>
<tr>
<td>Equatorial anomaly</td>
<td>9-8, 10-51, 10-58, 10-94</td>
</tr>
<tr>
<td>Equatorial bubbles</td>
<td>10-58, 10-60, 10-75</td>
</tr>
<tr>
<td>Equatorial electrojet</td>
<td>4-12, 4-20, 9-4, 9-6</td>
</tr>
<tr>
<td>Equatorial Es</td>
<td>9-7</td>
</tr>
<tr>
<td>Equatorial pitch angle</td>
<td>5-13, 5-29, 5-42</td>
</tr>
<tr>
<td>Equatorial spread F</td>
<td>9-9</td>
</tr>
<tr>
<td>Equatorially mirroring particles, 5-4, 5-9, 5-15, 5-22</td>
<td></td>
</tr>
<tr>
<td>Ethane (C₂H₆)</td>
<td>21-23</td>
</tr>
<tr>
<td>EXCEDE program</td>
<td>12-21, 12-22, 12-27, 12-31</td>
</tr>
<tr>
<td>Exchange layer</td>
<td>20-1, 20-5, 20-11, 20-13</td>
</tr>
<tr>
<td>Excitation factor</td>
<td>10-26, 10-30, 10-31, 10-33</td>
</tr>
<tr>
<td>Exosphere</td>
<td>14-7</td>
</tr>
</tbody>
</table>
Exospheric temperature, 14-27, 14-38
Explorer 8, 7-2, 7-3
Explorer 31, 7-15, 7-22
Explorer 45, 5-24, 8-11
External field models, 4-27
Extinction coefficient, 16-49
Extragalactic distances, 25-5
Extraterrestrial ring current, 5-42, 5-43, 5-45

F region, 9-1, 10-34, 10-36, 10-37, 12-1, 12-3, 12-4, 21-52, 21-53
F region trough, 10-57, 12-3
Fabry-Perot interferometer, 10-18
Fades, ELF, 10-28
Fairfax cup, 10-17
Faraday rotation, 10-4, 10-28
FASCOD, 18-1, 18-31-18-39
Fast mode MHD waves, 3-4, 3-13
Fast neutron flux, 6-15
Feldstein-Starkov belt model, 10-63
Field aligned currents, 4-20, 4-23, 8-12, 8-19
Flare continuum, 11-3
Focusing of ELF modes, 10-26, 10-28, 10-29
Fog, 16-46, 18-25, 18-27, 18-29-18-33
Fog droplets, 18-25, 18-27-18-29
Fournier dryness, 6-8, 20-16, 20-17
Forecasting HF conditions, 10-60, 10-61
FOT, 10-39
Fountain effect, 9-8
Frequency management, 10-61
Frequency spreading, 10-58
Fresnel filter function, 10-74
Fresnel formulas, zones, 10-23, 10-25, 10-28
Frost point, 16-1

Galactic cosmic rays, 6-3
Galactic rotation, 25-5
Galaxies
ellipticals, 25-18, 25-19
Seyfert, 25-19
spiral, 25-18
Gaussian spectra, 12-14, 12-15
General atmospheric circulation theory, 16-6
Geocentric solar-ecliptic coordinate system, 4-3
Geocentric solar-magnetospheric coordinate system, 4-3
Geodesy, 24-1
geometric, 24-1
physical, 24-1
Geodetic azimuth, 23-24, 24-3
Geodetic coordinates, 4-3
Geodetic latitude, 24-1
Geodetic longitude, 24-1
Geodetic reference system 1980, 24-8
Geographic coordinate system, 4-2
Geoid, 24-1, 24-6, 24-8, 24-9, 24-15
Geoid undulation, 24-2, 24-3, 24-8, 24-11, 24-14
Geodynamics, 23-1
Geomagnetic activity, 7-10
Geomagnetic bay, 4-23

Geomagnetic disturbance, 4-8
Geomagnetic field, 4-1, 10-26, 10-29, 10-33, 10-35-10-38
coordinate systems, 4-2, 4-3
dipole strength, 4-16, 4-19
disturbed variation field, 4-7
equatorial surface field, 4-7
GSFC 9/80 model, 4-13
L variation field, 4-7
lunar daily variation, 4-20
magnetic declination, 4-1
magnetic elements, 4-2, 4-13
magnetic field, 4-5, 4-13
main field, 4-5, 4-13
magnetometers, 4-12
quiet variation fields, 4-7, 4-19
regional anomalies, 4-17
solar quiet (sq) variation field, 4-7, 4-19
sources of, 4-5
steady field, 4-5, 4-13
transient variations, 4-1
variation field, 4-5
vector, 4-2
Geomagnetic indices, 10-28
Geomagnetic pulsations, 4-8, 4-23
Geomagnetic storm, 1-20, 3-17, 3-22, 3-23, 4-21, 5-11, 5-26, 5-28, 5-31, 5-32, 5-45, 10-28, 10-34, 10-59, 10-80, 17-31
geomagnetic bay, 4-23
initial phase, 4-21, 4-22
main phase, 4-22
recovery phase, 4-22
ring current plasma, 4-22
solar wind discontinuities, 4-22
sudden commencement, 4-21, 4-22
sudden impulse, 4-22, 4-23
Geomagnetic substorm, 3-31, 4-21, 4-22
Geomagnetic tail, 4-6
Geometric method, 24-12
Geopotential altitude, 14-7
Geos 1 (ESA), 4-12, 24-9
Geos 2 (ESA), 4-13, 24-9
Geos 3 (NASA), 24-9, 24-14
Geosat, 24-15
Geostrophic charged particle environment, 5-38, 3-41
Geosynchronous environment, 7-9, 7-10
Giant stars, 25-10, 25-19
Global datum (WGS72), 24-5
Global mean energy cycles, 15-3
Global warming, 15-2
GOES 1, 2, 3, 4-13
Goddard earth model, 9-210
Goody band model, 18-44
GPS satellite, 10-78, 10-85, 24-13, 24-14
Gradient drift, 5-7
Gradientimeter, earth-borne, 24-12
Gradiometry, 24-12
Graupel (hail), 16-16
Gravimeter surveys, 23-22
Gravimetry, 24-11
Gravitational constant, 24-8
Gravity anomaly, 24-8, 24-9, 24-10
Gravity disturbance, 4-8
Gravity field, 24-7, 24-8, 24-12, 24-14
Gravity formula, 24-8
Gravity measurements, 24-11
 absolute, 24-11
 relative, 24-11, 24-12
Gravity waves, 14-38, 17-45, 17-47
Great plains turbulence field program, 17-2
Green flash, 18-65
Greenland, 10-33
Ground albedo, 18-62
Ground level events, 1-20
Groundwater, 23-31
Gravitywaves, 10-22-10-24, 10-25, 10-34-10-36
Group delay, 10-84
Gyro (cyclotron) radius, 5-4, 5-6
Gyrofrequency, 5-19, 10-3, 10-29
Gyro (cyclotron) resonance, 5-18
Gyrocompass, 23-37
Gyroperiod, 5-4
Gyrosopes, 24-7
Gyrosynchrotron radiation, 11-2

Hail, 16-16
Hailstorm duration, 16-16
Hailstorm frequency, 16-17
Hall conductivity, 20-20
Hall current, 4-20, 4-24, 8-13, 9-6
Hamilton-Jacobi action variable, 5-3
Harang discontinuity, 8-13, 8-20
Heat conduction equation, 25-6
Heavy ion effects on microcircuitry, 5-49
Heavy ion fluxes, 5-28, 5-30, 5-31
Heavy ions, 5-24, 5-31
Height of reflection, 10-35
Height-gain factors, 10-23, 10-30, 10-31
Helium ions, 5-16, 5-17, 5-24, 5-26, 5-30, 5-31
Herzberg bands, 22-2
Herzberg continuum, 22-4
Herzsprung-Russel diagram, 25-13
Heterosphere, 21-51
HF
 backscatter radar, 10-65, 10-66
 conditions, forecasting, 10-60, 10-62
 communication, 10-1
 propagation, 10-1, 10-45
 propagation, Boulder Workshop, 10-62
 propagation, diversity techniques, 10-57
 radars, 10-1, 10-6
 radiation, 21-52
High altitude nuclear bursts, 10-28, 10-34
High energy protons, 10-57
HIRIS experiment, 12-32, 12-36
Horizontal wind shears, 17-14
Hubble constant, 25-5
Humidity extremes, 16-3
Humidity, diurnal cycles, 16-3
Hurricanes, 17-27
Hydrogen (H\textsubscript{2}), 21-21, 21-22, 21-47, 21-48
Hydrogen 21 cm emission, 25-17
Hydrogen chloride (HCl), 21-39, 21-40
Hydrogen fluoride (HF), 21-40, 21-41
Hydrogen lyman-\alpha, 2-14, 2-16, 2-19, 2-20, 12-28, 20-18, 20-20, 21-46, 21-52, 22-2, 22-4
Hydromagnetic waves, 4-22, 4-23
Hydronium ions, 21-54
Hydroperoxyl (HO\textsubscript{2}), 21-38, 21-39
Hydrostatic equation, 14-2
Hydroxyl (OH), 21-37, 21-38

Ice
 accretion, 16-20, 16-21
 particles, 18-27, 18-28, 18-29
 pellets, 16-16
 storms, 16-21
ICECAP experiment, 12-34, 12-36
IMP 2, 7-5
Impedance, 10-23, 10-25, 10-26
Incoherent rupture, 23-6
Incoherent scatter, 10-1, 10-14
Inelastic collisions, 12-22
Inert gases, 21-50
Inertial instrument error sources, 23-39
Inertial navigation, 24-10, 24-12
Inertial positioning, 24-7
Infrared airglow, 13-1
Infrared radiance, 13-1
Infrared radiators, 13-10
 CO\textsubscript{2}, 13-10
 H\textsubscript{2}O, 13-12
 NO, 13-12
 O\textsubscript{3}, 13-12
 OH, 13-13
Infrared sources, AFGL astronomical, 25-17
 GL 2688, 25-17
 GL 618, 25-17
 GL 915, 25-17
Infrared spectrophotometry, 25-16, 25-17, 25-18
Initial phase, geomagnetic storm, 4-21, 4-22
INJUN 5, 7-3, 8-13
Insolation, solar, 15-1, 15-11
Inversion of VLF/LF data, 10-35, 15-5
International Atomic Time, 24-16
International Auroral Atlas, 12-25
InternationalAtomic Time, 24-16
International Brightness Coefficient, 12-16, 12-25
International Bureau of Standards, 24-16
International Civil Aviation Organization (ICAO), 14-1
International Council of Scientific Unions (ICSU), 4-33
International Geomagnetic Reference Field, 4-25, 4-27
International gravity standardization network, 24-12
International latitude service, 24-15, 24-16
International Reference Ionosphere, 10-56
International Union of Geodesy and Geophysics (IUGG), 4-33
International Union of Geodesy and Geophysics (IUGG), 4-33
International Ursgram and World Data Service, 10-59
Interplanetary Magnetic Field (IMF), 1-21, 3-22, 3-23, 3-24
Interplanetary medium, 6-25
Interstellar absorption, 25-17
Interstellar gas, 25-17
Interstellar reddening, 25-18
Inversion of VLF/LF data, 10-35, 15-5
Inverted-V events, 8-19, 8-23, 8-24, 9-5
Ion beams, 8-24
Ion chemistry, 20-9, 20-10, 20-18
Ion composition, 5-44
Ion temperature, 10-15
Ion-pair production rate, 20-16
Ionization profile with ionized layers, 9-1
Ionogram, 10-1, 10-2, 10-7, 10-8
Ionosonde, 10-1, 10-5, 10-6
Ionosonde network, 10-1, 10-13
Ionosounding, 10-35
Ionosphere, 9-1, 5-8, 5-9, 21-51
artificial modification of, 10-96
bubbles, 9-9, 10-58, 10-60, 10-75
chemistry of, 9-3
electric fields, 8-12-8-15, 8-18, 8-19, 8-24
heating experiments, 10-98
irregularities, 10-58, 10-63, 10-71, 10-74, 10-75, 10-77, 10-81, 10-98
irregularities type I, 9-7
irregularities type II, 9-7
minor constituents, 9-2
modification, 10-96
production of, 9-2
refractive index, 10-87
scintillation, 10-71, 10-72, 10-74, 10-75, 10-77, 10-78, 10-99
structure of, 9-1
Ionospheric absorption, 10-36
Ionospheric clutter, 10-63, 10-71
Ionospheric convection, 8-3
Ionospheric currents, 4-7, 4-8, 9-4
Ionospheric dispersion, 10-88
Ionospheric hole, 10-96
Ionospheric index, 10-48, 10-50, 10-55, 10-61, 12-1, 12-3, 12-4
Ionospheric layers
 D layer, 9-1, 10-3, 10-39, 10-51, 12-1, 12-2, 12-4
 E layer, 9-1, 10-1, 10-39, 10-50, 10-63, 10-70
 F1 layer, 9-1, 10-50, 12-1, 12-3, 12-4
 F2 layer, 10-1, 10-39, 10-50, 10-60, 10-75
Ionospheric models, 10-46, 10-47, 10-56, 10-57
AFGCW 4-D, 10-43, 10-90
Bent, 10-40, 10-45, 10-90
Bradley, 10-42
IONCAP, 10-41, 10-42, 10-45
IRI-79, 10-43, 10-45
ITS-78, 10-39, 10-42, 10-45, 10-89
Ionospheric parameters, 10-41
Ionospheric parameters contour maps, 10-55
Ionospheric range delay, 10-96
Ionospheric resonance, 10-11
Ionospheric scaling factor, 10-84
Ionospheric sounders, 10-1, 10-14
Ionospheric substorms, 10-34
Ionospheric time delay, 10-96
Ionospheric trough, 10-51, 10-79
IRAS, 12-38
Irradiance approximations, 18-57, 18-58
Irregularity patches, 10-75, 10-76, 10-77
Island arca, 23-5
Isostatic equilibrium, 23-1
Jacchia model (1977), 14-26
Jet streams, 17-27, 17-28
Josephson junctions, 4-11
Kelvin-Helmholtz instability, 4-23, 4-24
Keplerian orbit, 24-12
Kinematic viscosity, 14-5
Kirchhoffs’ law, 18-61
Koschmieder theory, 18-64
Kp index, 4-28, 4-30, 5-26, 7-5, 8-20, 8-22, 8-23, 10-60, 14-36, 17-30, 17-35, 17-44, 17-54
Kursk anomaly, 4-16
L-field, 4-20
LAGEOS, 24-14
Lambert-Beers law, 18-5
Landau resonance, 5-19, 5-20
Langmuir probe, 7-1, 7-10, 7-17, 10-17
Laplace azimuths, 24-4
Larmor frequency, 4-9
Lateral reflection, ELF waves, 10-28
Lethal dosage, radiation, 5-50
Leveling networks, 24-6
LF-VLF radiation, 21-52
Lidar, 16-34, 21-48
Light ion trough, 9-4
Lightening, 10-37
discharges, 20-6, 20-26
induced radio burst noise, 20-32
parameters, 20-26, 20-27
VLF and ELF signals, 20-27
Line intensity, 18-5
Linearized space charge, 7-1
Liouville’s theorem, 5-45, 7-18, 7-22
Lithosphere, 23-2, 23-3
Local thermodynamic equilibrium, 13-3
Long waves (below 3000 KHz), 10-20, 10-22-10-24, 10-37
Loran-C, 10-22
Lorentz force, 5-3
Lorentz line shape, 18-4
Loss cone, 5-2
Loss cone angle, 5-2
Loss cone electrons, 12-12
Love waves, 23-9, 23-10
Low latitude boundary layer, 8-5
Low level jet streams, 17-5
LOWTRAN, 18-1, 18-44, 18-46-18-53, 18-58
LUF, 10-39, 10-51
Luminosity function, 25-19
Lunar albedo, 25-7
Luxemburg effect, 10-37
Lyman-Birge Hopfield Bands, 22-2
Lyman-α radiation, 2-14, 2-16, 2-19, 2-20, 12-28, 20-18, 20-20, 21-46, 21-52, 22-2, 22-4
Magnetic dip equator, 4-20
Magnetic dipole, 5-1
Magnetic index, 10-79
Magnetic merging, 3-24, 8-24
Magnetic mirroring, 8-7
Magnetic moment (relativistic-non relativistic), 5-4
Magnetic Q index, 12-2, 12-6
Magnetic reconnection, 3-24
Magnetic rigidity, 6-2
Magnetic storm, 4-8
Magnetic-ionic splitting, 10-4
Magnetooacoustic waves, 3-13-3-16, 3-29
Magnetohydrodynamic waves, 3-4, 3-13
Magnetometers, 4-9
alkali-vapor, 4-9
fluctuate, 4-8, 4-10
helium, 4-8, 4-9
induction-coil, 4-8
proton precession, 4-8, 4-9
proton vector, 4-9
rubidium vapor, 4-8
SQUID, 4-8, 4-11, 4-12
search coil, 4-8
INDEX

Magnetopause, 4-6, 4-22, 8-1, 8-2, 8-3, 8-20
Magnetopause current, 4-7
Magnetosheath, 3-1, 3-24, 4-6, 8-1, 12-1, 12-2
density, 3-24
electric fields, 3-27
field fluctuations, 3-29
magnetoacoustic modes, 3-29
plasma clouds, 3-29
power spectra, 3-27
rotational wave modes, 3-29
stagnation point, 3-24

Magnetopause current, 4-7
Mohorovicic discontinuity, 23-1, 23-3
Magnetosheath, 3-1, 3-24, 4-6, 8-1, 12-1, 12-2
Molecular absorption, 18-4, 22-5
Molecular nitrogen, 22-3, 22-4
Molecular oxygen, 22-3, 22-4
Molecular temperature, 14-28, 14-30
Moving type IV bursts, 11-3
MUF, 10-39, 10-41, 10-42, 10-52, 10-53, 10-60
Multi-hop circuit, 10-53
Multipath fading, 10-57
Multipath interference, 10-54
Multipath propagation, 10-57
Multiple scattering, 18-53, 18-54

N(2D), 12-32, 12-33
N2 First Positive Band, 12-30, 12-33
N2 IR Afterglow, 12-31
N2 Substorms, 4-8
N2+ First Negative Band, 12-19, 12-30, 12-37
N2+ Meinel Bands, 12-30-12-33
N2Wu-Bencsch Bands, 12-31

Maxwellian spectra, 12-13, 12-14
Mean collision frequency, 14-3
Mean free path, 14-4
Mean sea level, 24-1, 24-6
Mean solar time, 25-2
Neutral winds, 9-4
Neutron differential energy spectrum, 6-15
Neutron flux, 5-8, 6-18
Neutron monitor, 6-7-6-9, 6-20, 6-21
Nimbus 3, 18-50, 18-53
Nimbus 4, 18-51
Nimbus 5, 18-50, 18-53
Nimbus 4, 18-51
Nitric acid (HNO3), 21-35, 21-36, 21-37
Nitric oxide (NO), 21-26, 21-31, 21-54, 21-50, 21-54
Nitric oxide bands, 22-2
Nitrogen (atomic), 21-50
dioxide (NO2), 21-30-21-35, 21-50
pentoxide (N2O5), 21-37
trioxide (NO3), 21-35, 21-37
Nitrous oxide (N2O), 21-15, 21-16, 21-17, 21-18
NNSS—NASA navigation satellite system, 10-86, 24-13
NO, 12-31-12-36
NO 2.3 μm emission, 12-22, 12-24, 12-31-12-36
NO 2.7 μm emission, 12-22, 12-24, 12-32-12-36
NO 5.3 μm emission, 12-22, 12-24, 12-31-12-36
NO radiation, 13-12
NO+, 12-33, 12-35, 12-37
NO−, 4, 3 μm emission, 12-35, 12-37
INDEX

NOAA, 21-16
Noctilucent clouds, 21-50
Non-linear radio wave propagation, 10-37
Normal gravity, 24-7, 24-8
Nuclear detonations, 5-50
effects on radiation belts, 5-50
Nyquist condition, 18-38

O2 (a) state, 12-32
O2 atmospheric bands, 12-31, 12-32
O2+ first negative band, 12-31
O3 9.6 \textmu m emission, 12-32, 12-35
Obliquity factor, 10-52
Ocean loading, 23-27
Odd halogens, 21-15, 21-38
Odd hydrogen, 21-15, 21-37
Odd nitrogen, 21-15, 21-26
Odd oxygen, 21-15, 21-25
Offset pole, 12-6, 12-10, 12-12
OGO 1, 5-32, 5-33, 7-3, 7-5
OGO 3, 5-32, 5-33, 7-3
OGO 4, 5-33
OGO 5, 4-12, 5-23, 5-33, 5-36, 7-3
OGO 6, 4-12, 8-13, 8-14
Olson-Pfitzer models, 4-27
Onset time, 6-26
Ophiolites, 23-4
Optical air mass, 18-68-18-70
Optical depth, 18-37
Optical pumping, 4-9
Optical refractive modulus, 19-1
Optical thickness, 18-5
Optical turbulence, 18-65, 18-69, 18-71
Optical turbulence effects, 18-71
beam spreading, 18-71
beam steering, 18-71
image dancing, 18-71
scintillations, 18-71
spatial coherence degradation, 18-71
Optimum working frequencies (OWF), 10-59
Orthometric correction, 24-6
Orthometric height, 24-6
Outer radiation zone boundary conditions, 5-10
OV1-13, 5-33
OV1-19, 5-33, 5-35
OV3-3, 5-33
Oxygen ions, 5-17, 5-25, 5-26
Ozone, 21-1, 2-1, 18-71, 20-18
absorption, 22-3, 22-4
absorption coefficient, 18-47
annual cycle, 21-11
anthropogenic modification of distribution, 21-3, 21-9
catalytic reactions, 21-3
Chapman reactions, 21-3, 21-9
catalytic reactions, 21-3, 21-9
chemical detectors, 21-6
data sources for, 21-7
density profiles, 18-3
diurnal modulation, 21-3
longitudinal distribution, 21-11
measurement, 21-5, 21-45
meridional cross section, 21-11
mixing ratio, 21-10, 21-11
models, 21-13, 21-45
photochemical reactions in the stratosphere, 21-2
photolysis, 21-6

Ozone (Continued)
poleward transport of, 21-4
production of, 21-2, 21-44
quasi-biennial oscillation, 21-11
satellite instrumentation, 21-6
semiannual oscillation, 21-11
spectrum, 13-8
total, 21-8, 21-9, 21-13
transition zone, 21-4
units of measurement, 21-2
variability, 21-12
vertical cross-section of concentration, 21-4
vertical distribution, 21-9

Paleomagnetism, 4-17
Palmdale bulge, 23-22
Pangaea, 23-5
Parsec, 25-4

Particle
densities in plasma sheet, 8-1
drift motion, 5-5
gyroradius, 5-2, 5-6
motion in dipole field, 5-3
pitch angle, 5-5
pushing codes, 7-25, 7-26, 8-7, 8-18, 8-23
reflection of long waves, 10-37
Particle-wave interaction, 5-18, 5-19
Pc pulsations, 4-23
Pedersen conductivity, 9-6, 20-20
Pedersen current, 4-24, 8-13, 8-20
Perfect gas law, 14-2
Peroxynitric acid (HO2NO2), 21-37
Pfotzer maximum, 6-12
Phase fluctuation, 19-9
Phase refractive index, 19-1, 19-10
Phase scintillation, 10-86, 10-87
Phase scintillation index, 10-73
Phase velocity, 10-30, 10-35, 19-1
Photo cross section
atomic oxygen, 22-3
molecular nitrogen, 22-3
molecular oxygen, 22-3
ozone, 22-3

Photodissociation, 13-2, 13-3, 21-2, 22-4
processes, 22-7
rates, 22-5-22-7
Photoelectron current, 7-12, 7-19
Photoelectron flux, 7-5, 7-10, 7-13, 7-20
Photoemission, 7-2, 7-26
Photoionization, 9-2, 21-2, 22-4
Photoionization cross section, 22-2
Photometers, 10-18
Pi pulsations, 4-24
Pi2 pulsations, 4-25
Pilot tone sounding, 10-62
Pinhole effect, 7-16, 7-29
Pitch angle diffusion, 5-13, 5-22, 8-10
Pitch angle diffusion coefficient, 5-20
Pitch angle diffusion flux, 5-18
Pitch angle scattering, 5-18, 5-19, 5-44
Plasma bubbles, 9-10, 10-58, 10-60, 10-75
Plasma frequency, 10-3, 10-37
Plasma mantle, 8-5
Plasma radiation, 11-2
INDEX

Secondary emission, 7-2, 7-10, 7-13
Secondary neutron flux, 6-14
Secondary standard stars, 25-3
Seismic low velocity zone, 23-2
Seismic noise, 23-19
Seismic waves, 23-7
 air coupled, 23-20
 body waves, 23-7, 23-8
 Love waves, 23-9, 23-10
 P-waves, 23-7, 23-8, 23-9
 Rayleigh waves, 23-9, 23-10
 S-waves, 23-7
 surface waves, 23-7, 23-9
Seismology, 23-6
Shell splitting, 5-36, 5-37
Short arc method, 24-12, 24-13
Short term forecasts, 10-61
Sidereal time, 25-2
Silicon, 18-32, 18-33
Skin depth, 10-24, 10-27
Solar constant, 1-4, 1-13
Solar cycle, 3-7, 3-22, 10-78, 12-5, 12-6, 12-10, 15-1
Solar EUV flux, 11-4
Solar Electro Optical Network (SEON), 1-23
Solar energy input, 15-2
Solar flares, 1-18, 3-16, 10-58, 11-2, 20-16, 21-52
Solar particle events (SPE), 6-17, 6-19, 6-22, 6-23, 10-28, 10-31, 10-32
Solar particle flux composition, 6-24
Solar power flux density, 11-2, 11-6
Solar proton events, 6-17, 6-19, 6-20, 6-24, 20-15, 20-16, 21-15, 21-52
Solar radio emissions, 11-1
 Type I bursts, 11-3
 Type II bursts, 11-3
 Type III bursts, 11-2
 Type IV bursts, 11-3
 Type V bursts, 11-3
Solar spectral irradiance curves, 18-60, 18-61
Solar spectrum, 1-4, 2-1, 11-2
1-3000 Å, 2-14
below 1200 Å, 2-14
continuum, 1-7, 2-14
Hα; (Lyman-α); (H Ly-α), 2-14, 2-16, 2-19, 2-20, 12-28, 20-18, 20-20, 21-46, 21-52, 22-2, 22-4
soft x rays, 1-13, 1-17
UV, 2-15, 2-16, 2-18
wiggly lines, 1-7, 1-8
Solar synodic rotation rate, 6-26
Solar system, 25-5
Solar system dust, 25-9, 25-10
Solar tides, 14-33
Solar UV, 2-16
atmospheric absorption of, 2-16
variability, 2-18
Solar wind, 3-1, 1-20, 4-5, 4-7, 5-1, 7-5, 8-1, 8-2, 12-2, 12-20
acceleration of, 3-4
adiabatic process, 3-1
archimedes spiral, 3-21
conductivity, 3-24, 4-5
contact discontinuity, 3-15, 3-16
cycle, 3-23
dehy length, 3-7
discontinuity, 4-22
electric field, 3-3
electron distribution function, 3-9
electrons, 3-1, 3-7-3-9
expansion time scale, 3-12
flux fluctuation, 3-12
“freezing in” particles, 3-11
heavy ions, 3-12
helium ions, 3-7, 3-11, 3-21–3-23
hydrogen, 3-11
isothermal gas, 3-1
magnetic field, 3-4, 3-5, 3-6
magnetic field “frozen in”, 3-3, 4-5
magnetic sector, 3-4
magnetosphere, interaction with, 3-31
non-radial flow, 3-8
particles, 5-8, 5-9
plasma, 6-26
plasma density, 4-5
plasma flow, 3-3, 3-7, 3-8
polytropic law, 3-1, 3-2
quiet, 4-21
pressure of, 4-5
protons, 3-7, 3-8, 3-19, 3-21
Rankine-Hugonoit conditions, 3-16
rotational discontinuity, 3-15
sector boundaries, 3-4, 3-17, 3-21
sector orientation, 3-4
shocks, 3-5, 3-16, 3-22
speed, 3-23
Solar wind (Continued)

- streams, 3-17, 3-18, 3-21, 3-23, 10-59
- supersonic flow, 3-3
- tangential discontinuity, 3-15, 3-16
- velocity, 3-23

Solar wind theory

- magnetohydrodynamic turbulence theory, 3-12
- spherically symmetric fluid expansion, 3-1, 3-3
- two fluid model, 3-3

Solar X-ray flares, 10-28, 10-34

Sommerfield, 10-23

SOON (Solar Observing Optical Network), 10-59

Sounders
- chirp, 10-8
- digital, 10-5, 10-6
- topside, 10-10

South Atlantic magnetic anomaly, 5-29, 5-30

Space charge, 20-5, 20-13

Space Environment Services Center, 1-23

Space-charge potential, 7-17, 7-24, 7-26

Spacecraft charging, 7-1, 5-46

Spectral density, 19-6, 19-8

Spectral reflectance, 18-36

Spectroscopic parallax, 25-4

Speed of sound, 14-4

Spherical polar system coordinate system, 4-3

SPIRE, 13-4, 13-6

Sporadic E, 9-7, 10-39, 10-50, 10-57, 10-28, 21-50, 21-53, 21-54

Spread F, 9-9, 10-2, 10-58, 10-63, 10-75, 10-98

Spurnuk 3, 7-2

SS Currents, fields, systems, 4-12, 4-19, 4-20, 9-4, 9-6

Squall line thunderstorm complex, 20-21, 20-22

Stable auroral rod arcs, 9-4

Standard atmosphere, 0-1000 km, 14-1

Standard candles, 25-4

Standard station temperature, 15-2

Starfish nuclear explosion, 5-32

Static charge, 7-1

Stars
- classification, 25-13
- effective temperature, 25-13
- luminosity, 25-13
- spectrum, 25-13

Stochastic coefficients, 5-11

Storm continuum, 11-3

Storm time variation field, 4-8

Stormer approximation, 6-11

Stormer cutoff equation, 6-12

Stratopause, 14-7

Stratosphere, 14-7, 18-10, 21-14
- clouds, 16-45
- composition, 20-8, 20-9, 20-10
- warm/cold atmospheric models, 14-32
- water vapor, 16-4, 16-6, 16-45
- wind, 17-11

Strike-slip fault, 23-4

Structured auroras, 12-4

Subduction zone, 23-3

Sublimation, 16-1

Subsidence inversion layers, 19-5

Subsidence rates, 23-2

Subsoil temperature, 15-21

Substorms, 8-19, 8-25, 9-5, 17-44
- morphology, 8-25
- onsets, 4-25

Sudden commencements, 3-23, 4-21, 4-22

Sudden cosmic noise absorption, 10-62

Sudden enhancement of atmospherics, 10-63

Sudden enhancement of signals, 10-62

Sudden frequency deviation, 10-63

Sudden impulse, 4-22, 4-23

Sudden ionospheric disturbance (SID), 1-20, 10-62, 21-52

Sudden phase anomaly, 10-62

Summary of synoptic meteorological observations (SSMO), 16-27

Sun, 1-1
- acoustic waves, 1-9
- active, 1-13, 1-16, 20-15
- chromosphere, 1-9, 2-15, 11-1
- convection zone, 1-3
- corona, 1-9, 1-16, 1-18, 1-22, 2-15, 11-1
- coronal hole, 1-14, 1-17, 1-20
- corona holes, 1-11, 1-20
- corona sheet, 1-21, 3-5
- cycle, 1-14, 3-7
- density, 1-1
- diameter, 1-3
- ephemeral regions, 1-17
- filigree, 1-16
- flares, 1-18, 3-11
- granulation, 1-6, 1-7, 1-8
- K corona, 1-11
- luminosity, 1-1
- magnetic field, 1-13, 1-14
- oscillations, 1-3, 1-5, 1-8
- photosphere, 1-5, 11-1
- plage, 1-16
- prominences, 1-17, 1-20, 1-22, 3-11, 3-19
- radio flux, 1-11, 1-20, 2-16, 11-2, 11-3, 2-19
- rotation, 1-5, 2-20, 3-3
- spicules, 1-9
- streamers, 1-11, 1-21
- temperature, 1-1, 2-14
- transition region, 1-9
- variability, 1-22
- core, 1-1
- mass, 1-1
- pressure, 1-1
- quiet, 1-1

Sunspot
- cycle, 1-14, 3-17, 20-15
- groups, 1-14, 1-17
- maunder minimum, 1-14, 3-24
- number (Wolf-Zurich), 1-15, 2-16-2-19, 14-26
- polarity law, 1-14

Super refracting layers, 19-5

Supergiant stars, 25-10, 25-19

Surface discharges, 7-7

Surface loading, 23-29

Surface potential, 7-5

Surface wind speeds, 17-21

TEC (total electron content), 10-40, 10-43, 10-84, 10-89

TEC variability, 10-92

Tectonic processes, 23-21

Temperature, atmospheric, 14-1, 14-3, 14-27, 15-15
- daily mean range, 15-4
- degree day, 15-29
- diurnal cycles, 15-3, 15-4
INDEX

Temperature, atmospheric (Continued)
duration, 15-11, 15-13, 15-14
earth-air interface, 15-19
extremes, 15-7–15-11
high altitude, 14-26–14-34, 14-36, 14-38
interlevel correlation coefficients, 15-18, 15-22–15-27
inversion, 15-5
latitudinal variations, 14-8–14-12, 15-15
longitudinal variations, 14-21, 14-22
mean monthly values, 15-18, 15-22
mean standard duration, 14-9, 14-30, 15-18
runway, 15-7
seasonal variations, 14-8–14-12, 15-15
standard station, 15-2
subsoil, 15-21
surface air, 15-4
surface oscillation, 15-4
wind chill, 15-29
vs speed of sound, 15-19

TEP mode, 10-59
Terrestrial exosphere, 5-14, 5-17
Thermal conductivity, 14-6
Thermal pole, 25-6
Thermoelectric strains and tilts, 23-30
Thermosphere, 13-6, 13-7, 14-36
Thermospheric neutral winds, 14-7, 14-36, 17-29, 21-42, 21-51
Thermospheric winds, 10-59, 12-34
Thick sheet, 7-17, 7-18, 7-30
Thin sheet, 7-17, 7-18, 7-21
Thompson scatter, 10-14
Thunderstorm, 20-20
Tidal gravity meter, 23-27
tide gages, 23-22
tide models, 23-28
Time scales
coordinated universal time, 25-3
ephemeris time, 25-2, 24-16
international time, 25-2
mean solar day, 25-2
sidereal time, 25-2
universal time, 25-2

Time of flight approximation (WKB), 4-23
TOPEX, 24-15
Topside ionogram, 10-11
Topside ionosphere, 9-1, 9-2, 10-10
Topside profile, 10-18, 10-84, 10-89
Total electron content (TEC), 10-40, 10-43, 10-84, 10-89
Total ionization trough, 9-4
Total volumetric scattering coefficient, 18-7
Transcontinental traverse, 24-2
Transionospheric radio propagation, 10-20
Transmitter power, 10-56
Transport equation, 5-11
Transverse coherence length, 18-71
Transverse electric (TE), 10-22, 10-29, 10-30, 10-32–10-34
Transverse electromagnetic (TEM), 10-25, 10-28
Transverse magnetic (TM), 10-22, 10-24, 10-29–10-34
Traveling ionospheric disturbances, 10-96
Triangleulation networks, 24-2
Trigonometric parallax, 25-4
Trilateration networks, 24-2
Tropopause, 14-6
Tropopause clouds, 16-46

Troposphere, 14-16, 18-9, 18-10, 21-9
water vapor, 16-4
wind, 17-11
composition, 20-8, 20-10
True height, 10-4
Turbulence, 19-6, 17-28, 18-71, 18-72, 19-7
Twilight spectrum, 22-2
Two micron sky survey, 25-13

U-shaped spectral signature, 11-4, 11-5
UV Hartley and Huggins bands, 21-6
Ultraviolet absorption and ionization, 22-2
Ultraviolet airglow, 22-2
Ultraviolet radiance, 22-1
Variables stars, 25-5
Variable stars, 25-5

Universal time, 25-2

uni-directional integral intensity, 6-1
U. S. Naval Observatory, 24-16
U. S. Standard Atmosphere, 1976, 14-1, 14-26, 14-27
USAF Environmental and Technical Applications Center, 16-27
Universal time, 25-2
Unkehr/Dobson measurements, 21-6

U. S. Naval Observatory, 24-16
Van der Pol residue series, 10-24
Van Rhijn enhancement, 12-5
Vapor pressure, 16-1
Variable stars, 25-5
Vehicle potential, 7-2, 7-3, 7-6
Vela 6, 7-4
Vertical gradient, 24-12
Vertical wind shear, 17-14
Very long baseline interferometry, 23-23, 24-4, 24-14, 24-15, 24-18
Vibrational temperature, 13-3
Vibrational-rotational transitions, 13-1
Virtual height, 10-4
Visibility code, 18-65
Visibility, atmospheric, 16-49
extinction coefficient, 16-49
threshold contrast, 16-49
threshold illuminance, 16-49
Vlasov equation, 7-2, 7-16, 7-22
Vlasov-Maxwell equations, 8-1
VLF propagation, 10-1
VLF/LF, 10-20, 20-25, 10-28–10-37
Voigt line profile, 18-38–18-40, 18-42, 18-43
Volcanoes, 23-21
Volume scattering coefficient, 10-64
Voyager, 7-5

W measure, quiet fields, 4-32
Water cluster ions, 20-8, 20-9, 20-10, 21-46
Water vapor, 16-1, 16-3, 16-4, 16-6, 16-45, 18-71, 19-1, 19-2, 19-5, 21-23–21-25, 21-46, 21-48
coefficient, 18-47
density profiles, 18-2
Wave damping, 5-13
Wave guide modes, 10-22, 10-25, 10-29, 10-31, 10-37
Wave-Hop: LF, 10-29, 10-34, 10-36
Weather radar, 16-34
Weibull distribution, 16-54
Weyl, 10-23
Whispering gallery, 10-31
INDEX

Whistler modes, 10-22, 10-37
wave propagation, 5-19, 5-22
waves, 3-32
White dwarfs, 25-10
Wind chill, 15-29
Winds, 17-1
average profiles, 17-6
backing, 17-3
ballistic, 17-17
direction shifts, 17-4
diurnal variation, 17-4
equinoctial circulation, 17-31
gradient, 17-4
gradient level, 17-1
gusts, 17-23, 17-24
high latitude heating, 17-35
horizontal distribution, 17-6
logarithmic model, 17-2
maximum speed, 17-25, 17-26
meridional, 17-7, 17-32, 17-34
polar cap, 17-43, 17-47, 17-54
power model, 17-2
radar measurements, 17-11
roughness parameter, 17-2
seasonal circulation, 17-31
seasonal variations, 17-31
shear, 17-14
solar heating effects, 17-35, 17-36, 17-37, 17-42
solstice variations, 17-34
space variability, 17-13
speeds, 15-31

Winds (Continued)
statistics, 17-21
three-dimensional general circulation model, 17-34
tidal effects, 17-4
veering, 17-3-17-5
velocity profile, 17-1
vertical, 17-32, 17-34
vertical distribution, 17-6
zonal, 17-7, 17-10, 17-29, 17-32-17-34, 17-39
Wind speed frequency distribution, 14-33
circular normal distribution, 17-22
gamma distribution, 17-21
Weibull distribution, 17-21
WKB method, 10-28, 10-38
Wolf-Rayet stars, 25-17
high latitude heating, 17-35
World data centers, 4-33, 10-11
World geodetic system, 24-4
World Meteorological Organization (WMO), 14-1, 17-1, 20-33, 21-15
World vertical datum, 24-6

Z-R relations, 19-11
Zeeman splitting, 4-9
Zeneck wave, 10-23
Zenith looking experiment, 13-5, 13-6
Zero sunspot component, 11-2
Zodiacal light, 25-8, 25-9-25-12, 25-21
Zonal harmonics, 10-34
Zonal wind, 17-7, 17-10, 17-29, 17-32-17-34, 17-39

15