Chapter 11

SOLAR RADIO EMISSION

W. R. Barron
E. W. Cliver
J. P. Cronin
D. A. Guidice

Since the first detection of solar radio noise in 1942,
radio observations of the sun have contributed significantly
to our evolving understanding of solar structure and pro-
cesses. The now classic texts of Zheleznyakov [1964] and
Kundu [1965] summarized the first two decades of solar
radio observations. Recent monographs have been presented
by Kruger [1979] and Kundu and Gergely [1980].

In Chapter 1 the basic phenomenological aspects of the
sun, its active regions, and solar flares are presented. This
chapter will focus on the three components of solar radio
emission: the basic (or minimum) component, the slowly
varying component from active regions, and the transient
component from flare bursts.

Different regions of the sun are observed at different
wavelengths. At millimeter wavelengths, the radiation is
from the photosphere. Centimeter wavelength radiation
originates in the chromosphere and low corona. Decimeter
and meter wavelengths have their origin at increasing heights
in the corona; at meter wavelengths the observed radiation
comes from heights ranging from 100 000 to 700 000 km
above the photosphere. For receiving equipment on the earth,
the low-frequency limit for observation is the frequency at
which radio waves are reflected by the ionosphere (for prac-
tical purposes, around 20 MHz). The high-frequency limit
is set by absorption of radiation by atmospheric oxygen and
water vapor. Recently, radio experiments on satellites have
observed hectometric wavelength (<2 MHz) emission that
originate at heights =10 solar radii (Re). This leaves only
the frequency range form 2 to 20 MHz, corresponding to
emission heights of 2-10 R, unexplored by radio methods.

11.1 BASIC DEFINITIONS

If the sun radiated only,as a thermal source, the emitted
energy density would vary with frequency and temperature
according to Planck’s radiation law. In the radio region, the
Rayleigh-Jeans approximation for blackbody radiation is
valid; the brightness, radiance per unit bandwidth, is

By = 2kTfc 2 = 2kTA "2 (1.1

If the frequency f is in cycles per second, the wavelength
A in meters, the temperature T in degrees Kelvin, the ve-
locity of light ¢ in meters per second, and Boltzmann’s
constant k in joules per degree Kelvin, then By is in W
m2Hz 'sr™'. Values of temperatures T, calculated from
Equation (11.1) are referred to as equivalent blackbody tem-
perature or as brightness temperature defined as the tem-
perature of a blackbody that would produce the observed
radiance at the specified frequency.

The radiant power received per unit area in a given
frequency band is called the power flux density (irradiance
per bandwidth) and is strictly defined as the integral of Bd{},
between the limits f and f + Af, where (), is the solid angle
subtended by the source. In solar radio astronomy the re-
lationship used is

F, = B{), = 2kT,QN\ 7, (11.2)

where the apparent or disk temperature Ty is that temperature
which a uniform source of the same angular size as the solar
optical disk must have in order to produce the power flux
density F, received from the sun. Values of power flux
density are usually given in solar flux units (1 solar flux
unit, sfu = 10722 W m~2 Hz™).

The power P, received at the antenna due to solar ra-
diation is given by:

P, = FA,, (11.3)

where A, is the effective area of the antenna. P, is also
conveniently expressed in terms of the effective antenna
temperature T, corrected for any RF losses. T, is defined
by

P, = kTAAf. (11.4)

T, is readily measured with suitably calibrated instruments.
The equation for calculating the solar power flux density
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from a given antenna temperature measured at a given in-
stallation is

L
F, = 2kTAK’ (11.5)

¢

where A, is the effective area of the antenna in square
meters, and L is a dimensionless correction factor related
to the antenna response shape and to the diameter and tem-
perature distribution across the source. The value of L is
unity only if the antenna half-power beamwidth is large
compared to the source. L exceeds unity when the ratio of
the antenna half-power beamwidth to the solar angular di-
ameter drops below about five, thus, it is desirable to use
a parabola small enough so the half-power beamwidth is
more than five times the solar angular diameter. Once the
solar flux density is known, the apparent temperature and
the brightness of the solar disk may be calculated from
Equation (11.2).

11.2 THE MINIMUM (ZERO-SUNSPOT)
COMPONENT

The standard method for obtaining the basic radio flux
density of the unspotted sun is to make a scatter plot of
solar temperature at a given frequency against the projected
sunspot area; the extrapolation of the curve that best fits
these data to zero sunspot area determines the minimum or
basic flux density at that frequency. By doing this for all
frequencies, one determines the spectrum of the basic com-
ponent of solar radiation. Figure 11-1 shows the distribu-
tions of power flux density for the sun and for black bodies
at various temperatures. It is only at millimeter and shorter
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Figure 11-1. Solar spectrum and spectra of blackbody radiation at various

temperatures. The solar power-flux density (power per unit
area per unit bandwidth) is plotted against wavelength.
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wavelengths that solar radio emission approximates a 6000
K blackbody. At wavelengths longer than 1 cm, the equiv-
alent blackbody temperature ranges between 10* to 10° K
for the spotless sun and from 10* to 10'° K for the disturbed
sun depending on the condition of the sun and the time in
relation to the |l-year sunspot cycle. Meter wavelengths
are characterized by much burst activity; thus, the basic (or
minimum) sun temperatures at these wavelengths are de-
termined by making observations over a period of weeks or
months. The low temperature to which the sun periodically
returns, but never goes below, during this period is taken
to be the zero-sunspot value; it is of the order of 10° K.

11.3 THE SLOWLY VARYING
COMPONENT

The slowly varying component (SVC) exhibits a well
defined 11-year cycle variation and a 27-day solar-rotation
variation, since this emission originates principally in co-
ronal condensations overlying active regions, and is well-
correlated with sunspot number. The routine daily mea-
surement of the combination of the basic (or minimum)
component and the SVC of solar radio emission is referred
to as the quiet-sun flux density. The SVC of the sun as a
whole is obtained by subtracting the basic component from
the quiet-sun flux density. The SVC of individual active
regions can be obtained by either eclipse observations or
interferometric measurements.

11.4 THE BURST COMPONENT

During solar flares (Chapter 1) there may be large in-
creases (bursts) in radio emission lasting anywhere from a
few seconds to several hours. These bursts originate by
bremsstrahlung, gyrosynchrotron, and plasma radiations.
Characteristics of the bursts vary with wavelength. Bursts
in the meter-wave range (12 m to about 50 cm) are classified
by spectral type. No spectral classification exists for the
decimeter or centimeter wave regions.

11.4.1 Meter-Wave Range (25 - 500 MHz).

Most information on solar bursts in the range from 12
m to about 50 cm is obtained from swept-frequency obser-
vations. Dynamic spectra are displayed on a cathode-ray
tube and recorded photographically as a series of intensity-
modulated traces that give intensity as a brightening in the
frequency-time plane. Figure 11-2 is an illustration of ideal-
ized dynamic spectra of various types of bursts. These spec-
tral types are discussed below in the order of their occurrence
in the flare event.

Type HI bursts are the most common type of solar radio
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Figure 11-2. Idealized illustration of the record of a complete solar radio

outburst as recorded by a dynamic spectrograph at meter
wavelengths.

activity. They can occur either singly (duration ~5 s) or in
groups. Only about one-third of Type III bursts are asso-
ciated with flares. When associated with flares, however,
the timing agreement with flare impulsive hard x-ray and
microwave emission is often quite good (within seconds).
Type 11 bursts are caused by streams of ~100 keV electrons
propagating outward through the solar atmosphere and ex-
citing plasma waves. Because of their relatively high drift
rates (20 MHz/s) to lower frequencies, they are referred to
as fast drift bursts.

Type V bursts consist of a broad band continuum of
short duration (~1 min) that is preceded by a Type 11 burst
and accompanied by centimeter-wave and hard x-ray bursts.
The Type V burst may indicate the presence of a particularly
rich stream of electrons, part of which is trapped in the
corona and becomes visible either through gyrosynchrotron
radiation or plasma waves.

The Type Il burst, or slow-drift (~0.2 MHz/s) burst is
presumed due to the presence of a shock wave propagating
outward through the solar corona with a characteristic ve-
locity of 1000 km/s. The disturbance excites plasma waves
at the local plasma frequency. In the spectrograph record,
these bursts appear as a narrow band of intense radiation
that drifts gradually and often irregularly from high to low
frequency. About 60% of all Type II bursts show emission
at the second harmonic. Type 11 bursts are closely associated
with solar flares.

Type IV emission has at least three distinct components;
these components can not be separated on the spectrograph
record and can only be distinguished by interferometers.
Flare continuum is the broad band emission occurring at
meter and decameter wavelengths during the flare impulsive
phase. Moving Type IV bursts involve a variety of forms,
although three basic types have been recognized. These are
the magnetic arch, the advancing front, and the isolated
source (ejected plasma “blob”). Both the flare continuum
and moving Type IV emissions have durations < 10-60 min.
While the moving Type 1V burst travels outward through
the corona and can reach. heights of ~10° km above the
photosphere, the final stage of Type IV emission, the storm
continuum, originates low in the corona near the corre-
sponding plasma level and directly above the site of the
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optical flare. The storm continuum can last for s:veral hours
and often degenerates into the Type I noise storms whose
durations range from hours to days. In contrast to the flare
continuum and moving Type IV emissions that are only
weakly polarized, storm continuum is strongly polarized in
the ordinary mode. This suggests plasma radiition as the
source of the storm continuum, while gyrosynchrotron ra-
diation from energetic electrons spiraling in wzak coronal
magnetic fields are generally cited as the source of the flare
continuum and moving Type IV emissions.

Type [ events are distinguished from the relatively smooth
broad-band Type IV emission by the presence of a great
number of short (~1 s) intense bursts superimposed on the
background continuum. These short intense busts are dis-
tributed more or less randomly over the frequency range of
the underlying continuum. Both the background continuum
and the superimposed bursts are strongly circularly polar-
ized, usually in the ordinary mode. Type [ radiation appears
to be more closely associated with certain active regions
than with flares, although they can be flare-initiated. At
present, the mechanism and origin of Type I e nission are
not well understood.

11.4.2 Decimeter-Wave Range
(500 ~ 2000 MHz).

At decimeter wavelengths the emission is higaly variable
and complex. Rapid time structures (several peaks per min-
ute) are often observed in the time profiles of decimetric
radio bursts observed at discrete frequencies, and the re-
lationship of these fast structures to the source of the smoother
emission observed at centimeter wavelengths is not clear.
Individual peaks in complex events are often strongly cir-
cularly polarized in the ordinary mode.

11.4.3 Centimeter-Wave Range
(2000 — 35000 MHz).

Solar emission in the 15-1 cm range does not show as
rapid fluctuations as emission in the meter and decimeter
ranges. There appear to be at least two basic morphological
types of centimeter-wave bursts. The first of these is the
simple impulsive event that reaches a maximum peak-flux
density ranging from 10' to >10* sfu in a few minutes.
Impulsive bursts are interpreted in terms of gyrosynchrotron
emission. Complex bursts may consist of several impulsive
events in sequence, although the appearance of « relatively
smooth broad band microwave Type IV component in the
later stages of many complex events may indicate an ad-
ditional or prolonged acceleration process. The second of
these, the gradual rise and fall microwave burst, may occur
by itself or may follow an impulsive event (monotonic decay
only), in which case it is referred to as a post-burst event.
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Figure 11-3. The time-intensity profile of an impulsive microwave burst.

Peak flux densities of these gradual events seldom exceed
50 sfu; these events are generally explained in terms of
bremsstrahlung from a Maxwellian distribution of electrons.
Examples of the time profiles of microwave bursts observed
at Sagamore Hill Solar Radio Observatory are contained in
the burst atlas compiled by Barron et al. [1980]. A typical
impulsive event is presented in Figure 11-3.

Instantaneous spectra of events in the centimeter fre-
quency range are relatively smooth and tend not to have
narrow-band emission features. For moderate sized events
(=100 sfu), the peak-flux-density spectral maximum of the
emission generally occurs at frequencies =9 GHz. For the
largest events with centimeter wave peak flux densities = 1000
sfu, the emission usually extends to the meter-wave range
where it often exhibits a second spectral maximum with a
minimum occurring at the intermediate wavelengths. This
U-shaped spectral signature (Figure 11-4) is thought to re-
flect the fact that there are two different sources of burst
radiation (one at centimeter waves and one at lower fre-
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quencies) with different electron energy distributions and
different magnetic fields [Kundu and Vlahos, 1982].

11.5 CORRECTIONS TO QUIET-SUN AND
BURST-FLUX DENSITIES

In the final two sections of this chapter, charts and tables
of burst and quiet-sun flux densities from Sagamore Hill
Solar Radio Observatory are presented. It is appropriate to
discuss errors of absolute calibrations in these measure-
ments. In 1973, areport [Tanaka et al., 1973] by an absolute
calibration working group formed by Commission V of URSI
was published. It contained corrections for Sagamore Hill
for the years 1966-1971. For the years 1972-1976, cor-
rection factors were taken from the IAU’s Quarterly Bulletin
of Solar Activity. For 1977-1979, correction factors were
derived by extrapolation from previous years and compar-
ison of the Sagamore Hill quiet-sun flux densities with those
of other solar-patrol observatories. For 245 MHz, a sub-
stantial correction factor (1.55) was applied to all the data
as a result of an absolute calibrations measurement (using
the radio source Cassiopeia A) carried out at Sagamore Hill
in 1980. The multiplicative flux-density correction factors
for the five frequencies for which data are presented are
listed in Table 11-1. Before processing the data presented
below, these correction factors were applied to the Sagamore
Hill burst and quiet-sun data.

11.6 QUIET-SUN FLUX-DENSITY
MEASUREMENTS

Solar microwave emission correlates well with solar EUV
flux [Forbes and Straka, 19731, a fact which makes it useful
as an input to ionospheric models in lieu of the more difficult
to obtain sunspot number and EUV flux. For this reason,
the 1965 edition of the Handbook of Geophysics included
a table of the daily quiet-sun (non-bursting) flux densities
observed at 2800 MHz (10.7 cm wavelength) by the Na-
tional Research Council in Ottawa, Canada from 1947 to
mid-1963. We continue the table in this handbook using
Ottawa data through 1965 and Sagamore Hill data thereafter.
In addition, the 8800 MHz quiet-sun flux-density values
from Sagamore Hill are included.

In Table 11-2 we present the observed daily solar flux
density value measured at 2800 MHz at Ottawa for the years
1963-1965 and the 2695 and 8800 MHz flux density values
measured at the Sagamore Hill Radio Observatory from
January 1966 through December 1979. It should be noted
that these are observed values and not values adjusted to 1
AU. The values are taken at local noon at the Sagamore
Hill meridian. This is done so that the radiation will have
passed through the shortest path in the earth’s atmosphere
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Figure 11-4. The peak flux-density spectrum of a large microwave burst. The U-shape is characteristic for large microwave bursts with peak flux density

> 1000 sfu.

and be subject to the minimum atmospheric attenuation. In
some instances this meridian-transit observation is not pos-
sible because a solar radio burst is in progress at that time.
When this happens, the observation is taken as soon as it
has been determined that the radio burst has ended. In vir-
tually all cases this was within an hour of the time of me-
ridian transit so that the added attenuation due to the in-
creased atmospheric path length was negligible.

Table 11-1. Calibration correction factors, Sagamore Hill, 1966-1979.

Note the asterisk (*) between the 2695 MHz flux-density
value and the 8800 MHz flux-density value on some days.
This indicates that there were adverse weather conditions,
usually rain or snow, preserit when the observations were
being made. These conditions will cause the signals received
to be further attenuated. The asterisk indicates that some
adjustment has been made to the observed value to com-
pensate for this problem.

Year 245 MHz 610 MHz
1966 —_ 0.91
1967 — 0.91
1968 — 0.91
1969 1.55 0.91
1970 1.55 0.91
1971 1.55 0.91
1972 1.55 0.91
1973 1.55 0.91
1974 1.55 0.91
1975 1.55 0.91
1976 1.55 0.92
1977 1.55 1.00
1978 1.55 1.00
1979 1.55 1.00

1415 MHz 2695 MHz 8800 MHz
1.16 0.90 0.91
1.16 0.90 0.91
1.16 0.90 0.95
1.16 0.94 1.00
1.16 0.94 1.00(2)
1.16 0.94 1.00(2)
1.08 0.93 0.95
1.03 0.91 0.90
1.05 0.90 0.90
1.05 0.90 0.87
1.08 0.90 0.85
1.06 0.88 0.88
1.06 0.85 0.87
1.06 0.85 0.84

Notes: (1) For the period 9 June to 31 August 1967, all 2695 MHz burst and daily flux-density values should be multiplied by 1.13.
(2) For the period | November 1970 to 31 August 1971, all 8800 MHz burst and daily flux-density values should be multiplied by 1.14.
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Table 11-2b. Daily values of observed solar power flux densities at 2695 and 8800 MHz. Recorded at the AFCRL/AFGL Sagamore Hill Radio Observatory
(SGMR); Hamilton, Massachusetts.
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